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UNIDIMENSIONAL MODEL FOR PIPE FLOW OF A GAS MIXTURE ALLOWING 

FOR CONDENSATION 

N. I. Zverev, Yu. P. Korotaev, 
and V. I. Maron 

UDC 533.73 

Condensation kinetics is described with allowance for the dependence of the tem- 
perature of the phase transformation on the pressure and concentration of the con- 
densing gas at the phase boundary. 

We will examine the turbulent axisymmetric flow of a binary gas mixture in a pipe. Let 
the flow conditions be such that one of the components of the mixture condenses on the pipe 
surface, forming a film of liquid condensate of a thickness which increases with time. 

We will describe the flow of the condensing gas with a two-layer model of turbulent 
flow-- a laminar sublayer close to the surface of the condensate layer and a turbulent core 
in the remaining part of the flow. Intensive turbulent transport of the substance in the flow 
core makes the temperature, pressure, density, velocity, and concentration of the condensing 
gas practically constant across the pipe. Thus, we will use cross-sectional-mean values of 
these parameters to describe transport processes in the flow core, with the parameters chang- 
ing only with time and station (from cross section to cross section). In the laminar sub- 
layer between the flow core and the surface of the condensate film, the parameter values 
change from the values in the core to the values on the surface. 

The liquid in the film will be assumed stationary in order to simplify the construction 
of a one-dimensional model of the process, here retaining all of the essential features of 
the flow. 

The unidimensional equations for the mean (across the gas flow) quantities have the form 

at ax 
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These equations can be derived on the basis of integral balance equations for a gas particle 

the lateral surface of which at any moment of time coincides with the surface of the film and 
the end surfaces of which coincide with arbitrary sections of the gas flow. Here, it should 

be considered that the normal components of the velocities of the particle and the film sur- 
face are not equal [i]. 

At the phase boundary -- where several of the local parameters of the medium undergo a 
discontinuous change -- the following conditions of conservation of the total mass and energy 
of the flow and the mass of the condensing component are satisfied: 

[p (~ ,~  - -  D J ]  = O, 

[9h (~3~ - -  D~)I = -- [q,j, 

[9e (~,~ -- D,,)] = --[Jn], 

[%~1 = 0, [p.~] = 0, 

h = e ~ -  p (2) 
9 

Here, the first condition of total-mass balance serves to determine the radial component of 

velocity v w at the boundary, since u w is considered to be zero. 

Allowing for the first equation of (2) and the fact that [h] = L, we reduce the condition 

of energy balance to the form 

(%,~ -- DT~) L : -- [~,d (3) 

We will assume the temperature of the phase boundary to be equal to the condensation tem- 
perature, which is dependent on the partial pressure of the condensing gas Plw. To determine 
the latter, we have the following from the Clausius--Clapeyron conditions at L = const 

Tw/ 

We will write the equation of state of the gas mixture as: 

P = p ( P ,  T, 0). (5) 

If we assume that the components of the mixture are perfect gases, then the following equa- 

tions of state are satisfied for each of them: 

R R 
Pl "= - -  P iT ,  P2 -~ - -  92T. (6) 

ITl 1 1722 

Then the equation of state (5) for the mixture is 

p = - - p  1 +  - - 1  0 . 
m 2  A 

The partial pressure of the condensing gas Plw can be expressed through the total pressure p 
and c w and substituted into (4): 

The unidimensional equations (i) and phase-boundary conditions (2) contain local quan- 
tities -- flows of mass, energy, momentum, velocity, etc. on the film surface. To close the 
system of equations, it is to indicate the relation between these quantities and the governing 
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parameters of the unidimensional model. Such relations cannot be found within the framework 
of a unidimensional model and involve additional considerations for their determination. 
Here, either experimental results can be used, or simpler, three-dimensional models can be 
employed to describe transfer processes near the phase boundary, these models allowing 
thorough mathematical investigation of the problem. Also, these two approaches can be 
combined. 

Based on dimensional considerations, we can write the frictional stress and the heat and 
mass flow on the film surface in the form 

pu z 
Tw = - - { - - - ~ -  , in : ~(O--cw), q n = ~ ( T - - T w ) .  (9) 

Now the only difficulty in closing the unidimensional equations lies in finding the de- 
pendence of the coefficients ~, B, and ~ on the parameters of the unidimensional model. Here, 
we can use the results of experimental studies involving a two-phase annular flow [2]. Let 
appropriate relations for ~, B, and ~ be chosen. There remains yet one more complication in 
unidimensionally describing the process in question. It is necessary to indicate the tempera- 
ture and concentration at the moment of formation of the condensate film. This problem 
arises in connection with the fact that the phase transition temperature depends not only on 
the pressure in the system, but also on the concentration of the condensing gas in the flow. 

The following approach is suggested for solving this problem. During the initial part 
of the life of the film, the thermal and diffusion layers are much thinner than the laminar 
sublayer. During this period, transfer processes occur deep within this sublayer. They can 
therefore be described by formulating a Stefan-type problem allowing for heat and mass 
transfer. 

Let us examine the half-space y> 0, filled at the moment t = 0 with a quiescent mixture 
of gases with the temperature To at a pressure p. The solid boundary of the half-space has 
a temperature T b which is lower than the condensation temperature of one of the components 
under the conditions prevailing in the external region. In such a case, a layer of conden- 
sate is formed on the solid boundary. The coordinate of the phase boundary will be designated 
through yo(t). 

We will write the equations of motion, energy, and diffusion for the condensing component 
in the gas: 

&, 3v 02v 
v = v - - ,  v = v ( t ,  tj), y > y o ( t ) ,  (i0) 

Ol Otd Oy 2 

OT OT <>T 
- - - ~ - v  = •  T =  T(t ,  tj, y>Uo( t ) ,  ( l l )  
Ot Oy OF z 

OC Oc O2c 
at +v--==D , c - - -c( t ,  tj), F>Fo(O. (12) 

O F O.t] ~ 

The equation of heat flow to the condensate layer has the form 

OTl . L 32TI ' Tz Tz(t, !/), y < g o ( O .  
Ot xz &d---T, = 

The conditions on the phase boundary (similar to the conditions (2)): 

P (~'~ -- ~J0) = -- P#J0, U : Y0 (t), t > 0, 

Pz~oL=--  ~ aT + \  z-~-t j  / , y=Fo(t) ,  t > O ,  
ID / gO 

pc~ (v~--b0)- pD'(--~S~ ) ~~ =-0~b0, y = ~/0(i), t>0, 

where c w is determined by Eq. (8). 

Aty=~ 

(13) 

(14) 

(15) 

(16) 
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v = 0 ,  T = T  o , o = c  o, (17) 

at y= 0 

T=G., 

This system of equations differs from the system which describes the process without 
allowance for mass transfer in that it has an additional equation for the concentration of 
the condensing gas and an additional condition (16) for the phase boundary. Also, it is 
assumed that the phase transition temperature depends on the concentration of the gas in the 
vicinity of the phase boundary. 

We will introduce the similarity variable q = y/2/~ and change over to dimensionless 
variables: 

B =  do v /_ " v T 
7 - / / j  - - ,  ' 2 t  ,'-7 ' [ ( q ) =  a t  ' f l o ( r l ) =  To  

1 , 0 1 ) = - - T z ,  c o 0 l ) - -  c , e - -  O z - - P  
% co O 

Pc v v - -  , S o -  , Prz = v 
• D xz ( 18 )  

Then the equations (10)-(13) and boundary conditions (17) are written thus: 

4 
f" ' ~ _  f ' f - -  2 (f + ~ l f ' ) = o ,  f = f (q), 

V-~ 
p < n < o o ,  f ( o o ) =  0, f ( l ~ ) = - - - - ~ - ~ 1 ~ ,  

q~" § (2PrG 4Pr )q~, r f (n) = 0, ,~ = ~p (% 

% n < o o ,  cp ( o o )  = 1,  rp ([3) = T~/To, 

co" q- 2So ~] ~/~a f (n) oY = 0, 

co = co (q), f~ < n < ~o, co (oo) = i ,  co (p) = %ieo, 

1," -- 2Phh1,' = 0, 

,p = 1, ( %  o < ~ < f~, !, (o) = l ,  1, (p) = G ,  l r  b. (19) 

Integrating these equations, we obtain 

eiSexp[--0t2--$~) l , [3<~1<o  o, 
f (~0 = 2 

q- e~ exp 62 [eft I]-- err ~] 

r p ( , 1 ) = 1 4 - ( T ~ - - l )  I (~ '  pr) 
' . To  I ( ~ ,  Pr )  ' ~ < ~ / < ~ 1 7 6  

~o(~1) __ 1 q_ ( e w . -  1 ) I ( n ,  Sc) 
Co 1 (i~, Sc) ' 13 < ~ < o o ,  

( T W -  1 ) err (g pr~ T I ) T  b err (V~, ~ "~ ~1 < ~' (20) * (n) = 1 + p) ,  

where 

i exp (--Pr  ~2) d~ 
1 01, Pr) -= 2 + 8[~ exp 62 (eft ~ - -  err ~) 

'rt 1 /  

Substituting (20) into the phase-boundary conditions (15) and (16) (condition (14), used 
to find vw and determine the function f(~)), we obtain 
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where 

) exp (--Sc 82) , 
f38= Cw .... 1 2 ',2so/ 

exp(--Pq[3 ~) Tw __ 1 ( 2._/~p ~ 
o[5= T~ _ 1 ~ + TO- l([5, pr) 

J" exp (--Prz~ 2) d~ \ - - ~  ] 
0 

;~To 2p~Lv 2pz Sc 
;~lT b ;qT b pco 

(21) 

Equations (8) and 21) represent a closed system of transcendental equations for deter- 
mining the temperature of the phase boundary Tw, the concentration of the condensing com- 
ponent at the boundary Cw, and the dimensionless velocity of the boundary B. The parameters 
T w and Cw, serving as initial conditions in the solution of system (i), are found by solving 
these equations. 

As an example, let us look at the results of a numerical solution of system (21) in the 
case of an air--steam mixture: p = 4.0 MPa, co = 0.003, To = 340~ T b = 280~ B = 7.27'10 -4 , 
c w = 2.53.10 -4 , and Tw = 280.002~ 

In this example, the temperature on the surface of the layer turns out to be very close 
to the temperature of the wall T b and different from the temperature in the gas flow. The 
latter causes the mass flow to be directed toward the film. This fact is not considered in 
models in which the temperature of the phase transition is either constant or is dependent 
only on the pressure in the system. 

Such are the basic features of formulating the problem of the condensation of one of the 
gases in a mixture on the surface of a pipe, making it possible to reduce the description of 
the process to solving system of unidimensional equations (i) with allowance for conditions 
on the surface of the condensed liquid (2) and (3). 

The main feature of the above approach is that the description of the kinetics of con- 
densation considers the dependence of the phase transition temperature not only on the pres- 
sure in the system, but also on the concentration of the condensing gas in the vicinity of 
the liquid film. Thus, yet one more condition is added to Stefan's condition-- the condition 
of balance of the mass of the condensing gas on the film surface. In this model, the mass 
flow is toward the wall. 

Another important feature is the fact that the parameters T w and c w are found on the film 
surface at the moment it is formed. Otherwise, we could not formulate the initial conditions 
to solve the problem within the framework of the unidimensional model -- which are consistent 
with Stefan's condition for the heat flow on the film surface. 

NOTATION 

p, 0, H, u, T, average density of gas mixture, concentration of condensing component, 
enthalpy of mixture, longitudinal velocity component, and mixture temperature across the pipe; 
p, pressure in the gas flow; ~, gas flow velocity vector; % n and ~ T, normal and tangential 
components of velocity vector on the phase boundary; u w and Vw, components of velocity vector 
on the phase boundary; Dn, ~elocity of phase boundary along its normal; q, vector of heat flow 
resulting from conduction; j, vector of mass flow resulting from diffusion; qn and Jn, normal 
components of heat and mass flow on the phase boundary; L, latent heat of phase transforma- 
tion; Plw, partial pressure of condensing component of the mixture on the phase boundary; T, 
and p,, parameters on the equilibrium phase-transformation curve; Tw, phase transition tem- 
perature; R, Boltzmann constant; ml and m2, molecular weights of mixture components; Pl and 
P2, partial pressures of components in mixture; Cw, concentration of gas at the phase boundary 
on the side of the gas flow; ~, ~, and ~, drag, mass- and heat-transfer coefficients; v, T, 
and c, convection rate, temperature, and concentration of condensing gas over the half-space 
y> yo(t); T l, temperature of condensate in the region 0< y< yo(t); y = yo(t), coordinate of 
the phase boundary in the region y> 0; ~, • • D, kinematic viscosity of the gas diffusivity 
of the gas and condensate, diffusion coefficient; ~ and Xl, the thermal conductivity of gas 
and condensate; t, time; x and r, longitudinal and radial coordinates of a cylindrical coor- 
dinate system; y, distance from solid surface with the temperature T b. 
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DYNAMIC EQUATION OF STATE OF A GAS CONTAINING VAPORIZING DROPLETS 

G. P. Yasnikov and V. S. Belousov UDC 536.12 

On the basis of the relaxational formalism of nonequilibrium thermodynamics, a 
differential equation is obtained relating the pressure and volume of a gas con- 
taining vaporizing droplets. The relaxation time is calculated. 

The existing methods of calculating processes of gas compression with evaporative cool- 
ing are based, as a rule, on the methods of classical thermodynamics. This leads to the 
necessity of assuming thermal and phase equilibrium between the droplets and the vapor--gas 
mixture [1-3]. With a sufficiently high rate of the process, the temperature of the vapor T 
and the droplet T D will differ from the saturation temperature Ts: T-T s = ~i, TD-Ts = ~. 
As a result, the vapor concentration will also differ from the equilibrium value: x-x s = ~3. 
The rigorous description of nonequilibrium, even with fixed parameters of the cooling medium, 
is an extremely complex problem, and leads to very cumbersome results [4, 5]. Therefore, it 
is of interest to consider some simplified models of the process of nonequilibrium compression 
with droplets. Thus, for example, for the practical realization of evaporative cooling in 
compressors, it is expedient to use small concentrations of finely dispersed moisture (~30 g 
per kg of air) [2, 6]. The behavior of this mixture will be associated with small deviations 
from the equilibrium state, which may be analyzed using linear nonequilibrium thermodynamics. 
Below, the nonequilibrium compression of gas with droplets is analyzed on the basis of the re- 
laxational formalism of the thermodynamics of irreversible processes. 

It is assumed that the vapor, gas, and droplets, with masses MV, MG, and MD, respective- 
ly, form two local-equilibrium subsystems and, in accordance with the mass-conservation law, 
M V + M D = MM, the mass of injected moisture. It is expedient to introduce the notation: 

= MM/MG, x = Mv/MM, l-x = MD/M V. In accordance with the well-known ideas of [7-9], it may 
be assumed that, in quasisteady conditions, the intensity of heat transfer and the rate of 
vaporization depend on the temperature difference between the subsystems T--TD~ The behavior 
of this system will be characterized by a single effective relaxation time ~z. Further, fol- 
lowing [i0], the operator form of the effective thermodynamic derivatives is used, allowing 
the adiabatic modulus k and the polytropic index n to be represented in the form of operators 

\ ~  1~ no ~ .  

In this expression k~ and n~ depend solely on the properties of the vapor--gas mixture (with- 
out the particles) in the initial state, and characterize the process of instantaneous com- 
pression, in which the particles do not react to the perturbation. The indices ko and no 
characterize the equilibrium compression of the mixture of the gas and the droplet. It de- 
pends on the instantaneous state of the system, and varies over time~ Formally repeating the 
derivation in [i0], a dynamic equation is obtained for the adiabatic and polytropic compres- 
sion processes of the vapor--gas mixture with the droplets 

v 

In deriving this equation, it is taken into account that k~k~1~n~n~1~---~T~l; a dot over a 
a quantity denotes the first derivative with respect to the time; two points denotes the sec- 
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